Home
Class 11
MATHS
f(x)=cos^(-1)sqrt(log([x])(|x|)/(x))...

f(x)=cos^(-1)sqrt(log_([x])(|x|)/(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cos^(-1)sqrt(log_(|x|)((|x|)/(x)))

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

f(x)=cos^(-1)sqrt(log_([x])""abs(x)/x) , where [*] denotes the greatest integer.

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

f(x)=sqrt(sin^(-1)(log_(2)x))

If f(x)=sqrt(log_(2)((x)/(x^(2)-1))), then for what of

The domain of the function f(x)=(1)/(sqrt(log_(10)x)) is

The domain of f(x)=sqrt(cos(sin x))+sqrt(log_(x){x}) where {x} denotes fractional part of x .

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is