Home
Class 12
MATHS
[IfI(n),=int cos^(n)xdx," prove that "],...

[IfI_(n),=int cos^(n)xdx," prove that "],[,I_(n)=(1)/(n)(cos^(n-1)x sin x)+((n-1)/(x))I_(n-2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_(n)=int cos^(n)x dx , prove that, I_(n)=(1)/(n)cos^(n-1)x sin x+(n-1)/(n).I_(n-2) .Hence, evaluate, int cos^(5)x dx .

Evaluate: If int cos^(n)xdxdot provethatI_(n)=(1)/(n)(cos^(n-1)x sin x)+((n-1)/(x))I_(n)

Show that If I _(n) =int cos ^(n) x dx, then show that I_(n) =1/n cos ^(n-1) x sin x + (n-1)/(n ) I_(n-2).

If I_(n)=int sin^(n)x dx , show that, I_(n)=-(1)/(n) sin^(n-1)x cosx+(n-1)/(n).I_(n-2) . Hence, evaluate, int sin^(6)x dx .

If I_n=intxcos^nxdx,prove that: I_n=1/n cos^(n-1)x(sinx)+(n-1)/(n)I_(n-2)

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=