Home
Class 12
MATHS
For the matrix A=[1 1 1 1 2-3 2 1 3]. Sh...

For the matrix `A=[1 1 1 1 2-3 2 1 3]`. Show that `A^3-6A^2+5A+11 I=0`. Hence, find `A^(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I_3=O . Hence, find A^(-1) .

For the matrix A=[11112-32-13]. Show that A^(3)-6A^(2)+5A+11I_(3)=O. Hence find A^(-1) .

For the matrix A= [[1,1,1],[1,2,-3],[2,-1,3]] show that A^3-6A^2+5A+11I=0. Hence, find A^(-1)

For the matrix A = [[1,1,1],[1,2,-3],[2,-1,3]] Show that A^3-6A^2+5A+11I=O Hence, find A^-1

For the matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] Show that A^3-6A^2+5A+11I=O . Hence find A^(-1)

For the matrix A = [[1,1,1],[1,2,-3],[2,-1,3]] , show that A^3 - 6A^2 + 5A + 11I = 0 . Hence find A^-1 .

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A = [[3,1],[-1,2]] ,show that A^2-5A + 7I=0 Hence, find A^(-1)