Home
Class 9
MATHS
a(y+z)=x, b(z+x)=y, c(x+y)=z prove that ...

`a(y+z)=x, b(z+x)=y, c(x+y)=z` prove that `x^2/(a(1-bc))=y^2/(b(1-ca))=z^2/(c(1-ab))`

Text Solution

Verified by Experts

`a=x/(y+z), b=y/(z+x),c=z/(x+y)`
`x^2/(a(1-bc))=x^2/(x/(y+z)(1-y/(z+x)xxz/(x+y))`
`=(x(x+y)(y+z)(z+x))/(x(z+x+y))`
`=((x+y)(y+z)(z+x))/(z+x+y)`equation1
`y^2/(b(1-ac))=y^2/(y/(z+x)(1-x/(y+z)xxz/(x+y))`
`=(y(x-y)(y+z)(z+x))/(y(x+y+z))`
`=((x+y)(y+z)(z+x))/(z+x+y)`equation2
`z^2/(c(1-ab))=(z^2)/((z/(x+y)(1-x/(y+z)xxy/x-z)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .

If (y/z)^a (z/x)^b (x/y)^c=1 , then prove that (y/z)^((1)/(b-c))=(z/x)^((1)/(c-a))=(x/y)^((1)/(a-b)) .

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

If |(a,y,z),(x,b,z),(x,y,c)|=0 , then prove that (a)/(a-x)+(b)/(b-y)+(c)/(c-z)=2

If a^(x)=b^(y)=c^(z) and b^(2)=ac prove that (1)/(x)+(1)/(z)=(2)/(y)

a^(x)=b^(y)=c^(z) and b^(2)=ac then prove that (1)/(x)+(1)/(z)=(2)/(y)

if a,b,c are in G.P. and a^(x)=b^(y)=c^(z) prove that (1)/(x)+(1)/(z)=(2)/(y)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)|=(x-y)(y-z)(z-x)

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc