Home
Class 10
MATHS
Prove that: sqrt((sectheta-1)/(sectheta+...

Prove that: `sqrt((sectheta-1)/(sectheta+1))+sqrt((sectheta+1)/(sectheta-1))=2\ cos e c\ theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sqrt((sectheta-1)/(sectheta+1))+sqrt((sectheta+1)/(sectheta-1))=2cosectheta

Prove that sqrt((sectheta-1)/(sectheta+1))+sqrt((sectheta+1)/(sectheta-1))=2cosectheta

sqrt(sec^2theta-1)/(sectheta)

Prove that : sqrt((sectheta-1)/(sectheta+1))+sqrt((sectheta+1)/(sec theta-1))=2"cosec"theta

Prove that: sqrt((sectheta -1)/(sec theta +1)) + sqrt((sec theta +1)/(sec theta -1)) = "2cosec" theta

Prove that sqrt((cosectheta-1)/(cosectheta+1))+sqrt((cosectheta+1)/(cosectheta-1))=2sectheta

((cosectheta-1)(cosectheta+1))/((sectheta-1)(sectheta+1))

Prove that sqrt((sectheta-1)/(sectheta+1))=cosectheta-cottheta

Prove that, sqrt((sectheta-1)/(sectheta+1))=cosectheta-cottheta

prove that, sqrt((sectheta-1)/(sectheta+1))="cosec"theta-cottheta.