Home
Class 12
MATHS
" ,where "cos^(-1)x=sin(cot^(-1)(1)/(2))...

" ,where "cos^(-1)x=sin(cot^(-1)(1)/(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)(3/4)) , tan(cos^(-1)x)=sin(cot^(-1)(1/2))

tan (cos ^(-1) x) = sin (cot ^(-1) ""(1)/(2))

Solve the following equation for x:cos(tan^(-1)x)=sin((cot^(-1)3)/(4))tan(cos^(-1)x)=sin((cot^(-1)1)/(2))

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

Slove: tan(cos^-1x)=sin(cot^-1""1/2)

If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1]^(1/2)

cos[tan^(-1) {sin(cot^(-1) x)}] =