Home
Class 10
MATHS
The value of sqrt((1+costheta)/(1-cos...

The value of `sqrt((1+costheta)/(1-costheta))` is (a)`cottheta-cos e c\ theta` (b) `cos e c\ theta+cottheta` (c) `cos e c^2theta+cot^2theta` (d) `(cottheta+cos e c\ theta)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt((1+cos theta)/(1-cos theta)) is (a) cot theta-cos ec theta(b)cos ec theta+cot theta(c)cos ec^(2)theta+cot^(2)theta(d)(cot theta+cos ec theta)^(2)

Prove: (sintheta)/(1-costheta)=cos e c\ theta+cottheta

Prove: cos e c^6theta=cot^6theta+3cot^2thetacos e c^2theta+1

Prove: 1+(cot^2theta)/(1+cos e c\ theta)=cos e c\ theta

Prove: cos e c^2theta+sec^2theta=cos e c^2thetasec^2theta

Prove that : sqrt((1+costheta)/(1-costheta))="cosec"theta+cottheta

Prove: (cos e c\ theta+sintheta)(cos e c\ theta-sintheta)=cot^2theta+cos^2theta

Prove that sqrt((1-costheta)/(1+cos theta))=cosectheta-cottheta .

Prove that: sqrt((1+costheta)/(1-costheta))=cos e ctheta+cottheta .

Prove that sqrt((1+costheta)/(1-costheta))+sqrt((1-cos theta)/(1+cos theta))=2 " cosec"theta.