Home
Class 12
MATHS
The value of lim(n to oo) (sum n^2 * sum...

The value of `lim_(n to oo) (sum n^2 * sum n^3)/(sum n^6)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sum n^(2)*sum n^(3))/(sum n^(6)) is

The value of lim_(n rarr oo)((sum n^(2))(sum n^(3)))/(sum n^(6)) is (i)1(ii)(3)/(2)(iiii)(5)/(6)(iv)(7)/(12)

the value of lim_ (n rarr oo) (1-n ^ (2)) / (sum n ^ (2))

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

If the value of lim_(n to oo) (n^(-3//2)) . sum_(j=1)^(6n)sqrt(j) is equal to sqrt(N) , then the value of N is________.

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to