Home
Class 12
MATHS
Let f(x) = ax^(2) - bx + c^(2), b ne 0 a...

Let `f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0` for all `x in R`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

Let f(x)=ax^2-bx+c^2, b != 0 and f(x) != 0 for all x ∈ R . Then (a) a+c^2 2b (c) a-3b+c^2 < 0 (d) none of these

Let f(x)=ax^(2)+bx+c,a,b,c in Randa ne0 suppose f(x)gt0 for all x in R Let g(x)=f(x)+f(x)+f'(x) then

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in R. Also given that f (x) =0 has no real roots and 4a + b gt 0. Let p =b-4a, q=2a +b, then pq is:

Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in R. Also given that f (x) =0 has no real roots and 4a + b gt 0. Let p =b-4a, q=2a +b, then pq is:

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f '(x) ne 0 for all x in R . If |[f(x)" "f'(x)], [f'(x)" "f''(x)]|= 0 , for all x in R , then the value of f(1) lies in the interval:

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals