Home
Class 12
MATHS
lim(x->0)(x(a+bcosx)-csinx)/(x^5)=1...

`lim_(x->0)(x(a+bcosx)-csinx)/(x^5)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(ae^(2x)-bcosx+c)/(xsinx)=1 then a+b+c is equal to .__________

lim_(xto0)(ae^(2x)-bcosx+c)/(xsinx)=1 then a+b+c is equal to .__________

lim_(x->0)(e^(5x) - 1)/(3x)

lim_(x->0)(e^(5x) - 1)/(3x)

lim_(x rarr0)(1-cos4x)/(1-cos5x)

If f(x)={{:((a+bcosx+csinx)/x^2,xgt0), (9,xge0):}} is continuous at x = 0 , then the value of (|a|+|b|)/5 is

The value of lim_(x to 0)(5^(x)-5^(-x))/(2x)=

lim_(x→0) (√(x+1)−1)/x

If f(x)={{:(a+bcosx+csinx)/x^2,,xgt0), (9,,xge0):}} is continuous at x = 0 , then the value of (|a|+|b|)/5 is

lim_(x rarr0)((x+1)^(5)-1)/(x)