Home
Class 11
MATHS
f(x)=1/2[|sinx|+sinx],0 < x <= 2 pi. The...

`f(x)=1/2[|sinx|+sinx],0 < x <= 2 pi.` Then, f is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain fo f(x)=(1)/(|sinx|+sinx) is

If p,q,r and s are in AP and f(x) = |{:(p+sinx,q+sinx,p-r+sinx),(q+sinx,r+sinx,-1+sinx),(r+sinx,s+sinx,s-q+sinx):}| such that f_(0)^(1) f(x) dx =-2, the common difference of the AP can be

If p,q,r and s are in AP and f(x) = |{:(p+sinx,q+sinx,q-r+sinx),(q+sinx,r+sinx,-1+sinx),(r+sinx,s+sinx,s-q+sinx):}| such that int_(0)^(1) f(x) dx =-2, the common difference of the AP can be

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

Evaluation of definite integrals by subsitiution and properties of its : f(x)=|(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)| then int_(0)^(pi/2)f(x)dx=……….

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)