Home
Class 11
MATHS
The point of intersection of tangents dr...

The point of intersection of tangents drawn to the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` at the points where it is intersected by the line `l x+m y+n=0` , is (A) `((-a^2l)/n ,(b^2m)/n)` (B) `((-a^2l)/m ,(b^2n)/m)` (C) `((a^2l)/m ,(-b^2n)/m)` (D) `((a^2l)/m ,(b^2n)/m)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The point of intersection of tangents drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at the points where it is intersected by the line l x+m y+n=0 , is ((-a^2l)/n ,(b^2m)/n) (b) ((-a^2l)/m ,(b^2n)/m) ((a^2l)/m ,(-b^2n)/m) (d) ((a^2l)/m ,(b^2n)/m)

The point of intersection of tangents drawn to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the points where it is intersected by the line lx+my+n=0, is (A) ((-a^(2)l)/(n),(b^(2)m)/(n))(B)((-a^(2)l)/(m),(b^(2)n)/(m))(C)((a^(2)l)/(m),(-b^(2)n)/(m))(D)((a^(2)l)/(m),(b^(2)n)/(m))

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

The line l x+m y-n=0 is a normal to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)-(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)

The line l x+m y+n=0 is a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . then prove that (a^2)/(l^2)+(b^2)/(m^2)=((a^2-b^2)^2)/(n^2)