Home
Class 12
MATHS
Let f:R to R be a function satisfying f(...

Let `f:R to R` be a function satisfying `f(x+y)=f(x)+f(y)"for all "x,y in R`
`"If "f(x)=x^(3)g(x)"for all "x,yin R`, where g(x) is continuous, then f'(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be function satisfying f(x+y)=f(x)+f(y) and f(x)=x^(2)g(x) , for all x and y, where g(x) is a continuous function. Then f'(x) is :

Let f(x) be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x g(x)"For all "x,y in R , where g(x) is continuous. Then,

Let f(x) be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x g(x)"For all "x,y in R , where g(x) is continuous. Then,

Let f(x+y)=f(x)+f(y) and f(x)=x^(2)g(x)AA x,y in R where g(x) is continuous then f'(x) is

Let f be a function satisfying f(x+y)=f(x)+f(y) and f(x)=x^3phi(x) for all x and y when phi (x) is a continuous function then f''(x) is equal to

Let f be a function such that f(x+y)=f(x)+f(y)" for all "x and y and f(x) =(2x^(2)+3x) g(x)" for all "x, " where "g(x) is continuous and g(0) = 3. Then find f'(x)

Let f be a function such that f(x+y)=f(x)+f(y) for all x and y and f(x)=(2x^(2)+3x)g(x) for all x, where g(x) is continuous and g(0)=3 . Then find f'(x) .

Let f be a function such that f(x+y)=f(x)+f(y)" for all "x and y and f(x) =(2x^(2)+3x) g(x)" for all "x, " where "g(x) is continuous and g(0) = 3. Then find f'(x)