Home
Class 12
MATHS
" 1."(3x^(2))/(x^(6)+1)...

" 1."(3x^(2))/(x^(6)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate : :(3x^(2))/(x^(6)+1)

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If d/(dx) {f(x)}=1/(1+x^2) then d/(dx){f(x^3)} is a) (3x)/(1+x^3) b) (3x^2)/(1+x^6) c) (-6x^5)/(1+x^6)^2 d) (-6x^5)/(1+x^6)

If x=(6-sqrt(32))/(2), then find the value of (x^(3)-(1)/(x^(3)))^(2)-6(x^(2)+(1)/(x^(2)))+(x+(1)/(x))

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

(x^(2)-1/(x^(2)))^(3)=x^(6)-1/(x^(6))+… . The missing part is