Home
Class 10
MATHS
f(x)=x^(3)-3x^(2)+5x-3,quad g(x)=x^(2)-2...

f(x)=x^(3)-3x^(2)+5x-3,quad g(x)=x^(2)-2

Promotional Banner

Similar Questions

Explore conceptually related problems

Apply the division algorithm to find the quotient and remainder on dividing f(x)=x^(3)-3x^(2)+5x-3 by g(x)=x^(2)-2

Apply the division algorithm to find the quotient and remainder on dividing f(x)=x^3-3x^2+5x-3 by g(x)=x^2-2

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

Use the Factor Theorem to determine whether g(x) is factor of f(x) in each of the following cases : (i) f(x)=5x^(3)+x^(2)-5x-1, g(x)=x+1 (ii) f(x)=x^(3)+3x^(2)+3x+1,g(x)=x+1 (iii) f(x)=x^(3)-4x^(2)+x+6,g(x)=x-2 (iv) f(x)=3cx^(3)+x^(2)-20x+12,g(x)=3x-2 f(x)=4x^(3)+20x^(2)+33x+18,g(x)=2x+3

If f(x) = x^(2) - 5x -36 and g(x) = x^(2) + 9x + 20, then for what values of x is 2f(x) = 3g(x) ?

Find gof and fog wehn f:R rarr R and g:R rarr R are defined by f(x)=2x+3 and g(x)=x^(2)+5f(x)=2x+x^(2) and g(x)=x^(3)f(x)=x^(2)+8 and g(x)=3x^(3)+1f(x)=8x^(3) and g(x)=x^(1/3)+1f(x)=8x^(3) and

f(x)=3x^(3)+x^(2)-20x+12,g(x)=3x-2

Let f:R rarr R be defined as f(x)=x^(3)+3x^(2)+6x-5+4e^(2x) and g(x)=f^(-1)(x) ,then find g'(-1)

Use the Factor Theorem to determine whether g (x) is factor of f(x) in each of the following cases: (i) f (x) = 5x ^(3) + x ^(2)-5x -1, g (x)=x +1 (ii) f (x) = x ^(3) + 3x ^(2) + 3x +1 , g(x) =x +1 (iii) f (x) =x ^(3) - 4x ^(2) +x + 6, g (x) =x -2 (iv) f (x) = 3x ^(3) + x^(2) - 20x + 12, g (x) = 3x -2 (v) f (x) = 4x ^(3) + 20 x ^(2) + 33 x +18, g (x) =2x +3