Home
Class 12
MATHS
[AB=A" and "BA=B," then "A^(2)+B^(2)=-=-...

[AB=A" and "BA=B," then "A^(2)+B^(2)=-=-],[B)A+B,C)AB]quad D)0

Promotional Banner

Similar Questions

Explore conceptually related problems

If AB=A and BA=B, then B^2 =

If AB=A and BA=B then B^(2)=

If AB=A,BA=B then A^(2)+B^(2)=

If AB=A and BA=B, then show that A^(2)=A,B^(2)=B

If A and Bare square matrices of same order such that AB = A and BA = B, then AB^(2)+B^(2)= : a) AB b) A+B c) 2AB d) 2BA

" If "AB=A,BA=B" then "A^(2)+B^(2)=[[" (A) ",A+B],[" (B) ",A-B],[" (C) ",AB],[" (D) ",O]]

If AB= Aand BA=B, then a.A^(2)B=A^(2) b.B^(2)A=B^(2) c.ABA=A d.BAB=B

If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) 2AB (B) 2BA (C) A+B (D) AB

If A and B are two matrices such that AB=A and BA=B, then B^(2) is equal to (a) B( b) A(c)1(d)0