Home
Class 12
MATHS
Delta(x)=|[cos2x,sin^(2)x,cos4x],[sin^(2...

Delta(x)=|[cos2x,sin^(2)x,cos4x],[sin^(2)x,cos2x cos^(2)x],[cos4x cos^(2)x cos2x,0]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

When the determinant |{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}| is expanded in powers of sin x , the constant term in than or equal to expression is

When the determinant |{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}| is expanded in powers of sin x , the constant term is equal to expression is

When the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,cos^(2)x),(cos4x,,cos^(2)x,,cos 2x):}| expanded in powers of sin x, then the constant term in that expression is

If the determinant |(cos2x, sin^2x,cos4x),(sin^2x , cos2x,cos^2x),(cos4x,cos^2x,cos2x)| is expanded in powers of sinx , then the constant term in the expansion is :

If the determinant |(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)| is expanded in powers of sin x , then the constant term is

If the determinant |(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)| is expanded in powers of sin x, then the constant term is

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then