Home
Class 8
MATHS
Find the complex number z if arg (z+1)=(...

Find the complex number z if `arg (z+1)=(pi)/(6)` and `arg(z-1)=(2 pi)/(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if arg(z+a)=(pi)/(6) and arg(z-a)=(2 pi)/(3) then

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}

Find the locus of a complex number z such that arg ((z-2)/(z+2))= (pi)/(3)

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

Find the locus of z if arg ((z-1)/(z+1))= pi/4

Find the locus of z if arg ((z-1)/(z+1))= pi/4