Home
Class 12
MATHS
sin^(-1)x+sin^(-1)sqrt(1-x^(2))...

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of values of 'x' for which the formula 2sin^(-1)x=sin^(-1)2x sqrt(1-x^(2)) is true is

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

Find dy/dx if y = sin^-1x + sin^-1 sqrt(1-x^2) , 0ltxlt1

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=

Differentiate the following w.r.t. x: sin^-1x+sin^-1sqrt(1-x^2),-1lexle1

sin^(-1)sqrt(x)+sin^(-1)sqrt(1-x)=(pi)/(2)

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]