Home
Class 12
MATHS
lit(x rarr0)x sin(1)/(x)=...

lit_(x rarr0)x sin(1)/(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x sin((1)/(x))

lim_(x rarr0)x sin((1)/(x^(2)))

lim_(x rarr0) (sin x)/(x)

lim_(x rarr 0)"x sin" (1)/(x) is equal to :

lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0) [(sin^(-1)x)/(x)]

Statement I: lim_(x rarr0)(x)/(sin b^(2)x)=4 then b=+-(1)/(2) Statement II: lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0)sin^(-1){x}

[lim_(x rarr0)(sin x)/(x)]

lim_(x rarr0)((sin x)/(x))^((1)/(x))