Home
Class 12
MATHS
If y=a^ ((1)/(1-loga x), z=a^((1)/(1-log...

If `y=a^ ((1)/(1-log_a x),` `z=a^((1)/(1-log_ay)` and `x=a^k,` then `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a^((1)/( 1 - log_(a)x)) , z = a^((1)/(1 - log_(a)y)) , then x will be

If y=a^(((1)/(1-log_(a)x)))" and "z=a^(((1)/(1-log_(a)y))) , then x is equal to

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

If y=a^(1/(1-log_ax)), z=a^(1/(1-log_ay)) then prove that x=a^(1/(1-log_az))

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)),then prove that x=a^(1/(1-(log)_a z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))