For the four of three measured physical quantities as given below. Which of the following options is correct ?
(i) `A_(1)=24.36,B_(1)=0.0724, C_(1)=256.2`
(ii) `A_(2)=24.44B_(2)=16.082,C_(2)=240.2`
(iii) `A_(3)=25.2,B_(3)=19.2812,C_(3)=236.183`
(iv)`A_(4)=25,B_(4)=236.191,C_(4)=19.5`
For the four of three measured physical quantities as given below. Which of the following options is correct ?
(i) `A_(1)=24.36,B_(1)=0.0724, C_(1)=256.2`
(ii) `A_(2)=24.44B_(2)=16.082,C_(2)=240.2`
(iii) `A_(3)=25.2,B_(3)=19.2812,C_(3)=236.183`
(iv)`A_(4)=25,B_(4)=236.191,C_(4)=19.5`
(i) `A_(1)=24.36,B_(1)=0.0724, C_(1)=256.2`
(ii) `A_(2)=24.44B_(2)=16.082,C_(2)=240.2`
(iii) `A_(3)=25.2,B_(3)=19.2812,C_(3)=236.183`
(iv)`A_(4)=25,B_(4)=236.191,C_(4)=19.5`
Similar Questions
Explore conceptually related problems
Find the coordinates of the centriod of the triangle whose vertices are ( a_(1), b_(1), c_(1)) , (a_(2), b_(2), c_(2)) and (a_(3), b_(3), c_(3)) .
How many terms are there in the following product? (a_(1) + a_(2) + a_(3))(b_(1) + b_(2) + b_(3) + b_(4))(c_(1) + c_(2) + c_(3) + c_(4) + c_(5))
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of k for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is "(a) -3 (b) 7/11 (c) -2 (d) 2"
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column. The vaue of the determinant |{:(5,1),(3,2):}|is: "(a) 4 (b) 5 (c) 6 (d) 7 "
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is: "(a) 54 (b) 40 (c) -45 (d) -40"
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is:
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column. The vaue of the determinant |{:(5,1),(3,2):}|is:
The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|
Recommended Questions
- For the four of three measured physical quantities as given below. Whi...
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))| =5, then the v...
Text Solution
|
- For the four of three measured physical quantities as given below. Whi...
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))|=Delta, then |(...
Text Solution
|
- Show that |[a(1),b(1),-c(1)],[-a(2),-b(2),c(2)],[a(3),b(3),-c(3)]|=|[a...
Text Solution
|
- The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...
Text Solution
|
- यदि सारणिक Delta = |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))...
Text Solution
|
- If A(i),B(i),C(i) are the cofactors of a(i),b(i),c(i) respectively,i=1...
Text Solution
|
- If A(i),B(i),C(i) are the cofactors of a(i),b(i),c(i) respectively,i=1...
Text Solution
|