Home
Class 12
MATHS
if |z-iRe(z)|=|z-Im(z)| where i=sqrt(-1)...

if `|z-iRe(z)|=|z-Im(z)|` where `i=sqrt(-1)` then `z` lies on

Promotional Banner

Similar Questions

Explore conceptually related problems

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

If |z-iRe(z)|=|z-Im(z)|, then prove that z lies on the bisectors of the quadrants, " where "i=sqrt(-1).

If |z-iRe(z)|=|z-Im(z)|, then prove that z, lies on the bisectors of the quadrants.

Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to