Home
Class 12
MATHS
f(vi)tan^(-1)(sqrt(1+x)-sqrt(1-x))/(sqrt...

f(vi)tan^(-1)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)),(-1)/(sqrt(2))<=x<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the simplest form : tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)