Home
Class 12
MATHS
" (ii) "|[1,1,1],[1,1+x,1],[1,1,1+y]|=xy...

" (ii) "|[1,1,1],[1,1+x,1],[1,1,1+y]|=xy

Promotional Banner

Similar Questions

Explore conceptually related problems

1+x,1,11,1+y,11,1,1+z]|=xy+yz+zx+xyz

|(1+x,1,1),(1,1+y,1),(1,1,1+z)|=xy+yz+zx+xyz

|{:(1+x,1,1),(1,1+y,1),(1,1,1+z):}|=xy+yz+zx+xyz

solve |[1,yz,yz(y+z)],[1,zx,zx(z+x)],[1,xy,xy(x+y)]|

Value of the determinant |(x,1,1),(0,1+x, 1),(-y, 1+x, 1+y)| is (A) xy (B) xy(x+2) (C) x(x+1)(y+1) (D) xy(x+1)

Value of the determinant |(x,1,1),(0,1+x, 1),(-y, 1+x, 1+y)| is (A) xy (B) xy(x+2) (C) x(x+1)(y+1) (D) xy(x+1)

If D_1=|{:(1,yz,x),(1,zx,y),(1,xy,z):}|and D_2=|{:(1,1,1),(x,y,z),(x^2,y^2,z^2):}| then ,………

If xy = 1 + a^2 then show that, tan^(-1) [1/(a + x)]+tan^(-1) [1/(a+y)] = tan^(-1)[1/a],x + y + 2a ne 0 .