Home
Class 11
MATHS
the value of lim(n->oo) {1/(n^3+1)+4/(n^...

the value of `lim_(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+.................+n^2/(n^3+1)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

The value of lim_(n rarr oo)(1/(1-n^4)+8/(1-n^4)+...+n^3/(1-n^4)) is

Lim_(nto oo)(3^(n)+4^(n))^((1)/(n))=

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]