Home
Class 11
MATHS
The value of lim(x->1) (x^7-2x^5+1)/(x^3...

The value of `lim_(x->1) (x^7-2x^5+1)/(x^3-3x^2+2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr1)(x^(7)-2x^(5)+1)/(x^(3)-3x^(2)+2)=

Evaluate the following limit: (lim)_(x->1)(x^7-2x^5+1)/(x^3-3x^2+2)

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

The value of lim_(x rarr 1) (tan^(2)(x-1))/(x^(3)-x^(2)-x+1) =

The value of lim_(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

The value of lim_(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

The value of [lim_(x rarr1)(tan^(2)(x-1))/(x^(3)-x^(2)-x+1)]

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1