Home
Class 11
MATHS
The value of lim(x->0)(sinalphax-sinbeta...

The value of `lim_(x->0)(sinalphax-sinbetax)/(e^(alphax)-e^(betax))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sinalphax)/(sinbetax)

The value of lim_(x rarr0)(sin alpha x+sin beta x)/(e^(alpha x)-e^(beta x)) equals

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

lim_(x->o)(e^(alphax)-e^(betax))/(sinalphax-sinbetax)

Evaluate: lim_(x to 0)(log(1+alphax))/(sinbetax)

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is