Home
Class 11
MATHS
prove that cot^-1[(cosx+sinx)/(cosx-sinx...

prove that `cot^-1[(cosx+sinx)/(cosx-sinx)]=pi/4-x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .

Prove that: tan^(-1){(a cosx-b sinx)/(b cosx+a sinx)} =tan^(-1)((a)/(b))-x

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Prove that (cosx)/(1-sinx)=(1+cosx+sinx)/(1+cosx-sinx)

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

Prove that (1-sinx)/(cosx)=(cosx)/(1+sinx)