Home
Class 12
MATHS
If log(2a)a= X, log(3a) 2a = y, and log(...

If `log_(2a)a= X, log_(3a) 2a = y, and log_(4a) 3a` = z, then xyz-2yz is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If log_(3)x + log_(3)y =2 + log_(3)2 and log_(3)(x+y) =2 , then

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,prove that 1+x y z=2y z

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

If x=(log)_(2a)a,y=(log)_(3a)2a,z=(log)_(4a)3a, prove that 1+xyz=2yz

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to