Home
Class 11
MATHS
If z=i^(i^(i)) where i=sqrt-1 then |z...

If `z=i^(i^(i))` where `i=sqrt-1` then `|z|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If z=(i)^(i)^(i) where i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If z=sqrt(2i), then z is equal to

If z=i^(i^(i)) where i=sqrt-1 then find the value of |z|

Let z be a complex number such that |z| + z = 3 + i (Where i=sqrt(-1)) Then ,|z| is equal to