Home
Class 12
MATHS
(cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin...

`(cos^2 x+1/(cos^2 x))(1+tan^2 2 y)(3+sin 3 z)=4,` then y can take values equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^2 x + 1/(cos^2 x)) (1 + tan^2 2y)(3 + sin 3z) = 4 ,then

If (cos^(2)x+(1)/(cos^(2)x))(1+ tan^(2) 2 y)(3+ sin 3 z)=4 , then

If (cos^(2)x + 1/(cos^(2) x)) (1+tan^(2) 2y) (3+ sin 3z)=4 , then

If (cos^(2)x + 1/(cos^(2) x)) (1+tan^(2) 2y) (3+ sin 3z)=4 , then

If (cos^(2)x+sec^(2)x)(1+tan^(2)2y)(3+sin3z)=4 then (x,y,z)=

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If (sin x)/(sin y)=(1)/(2), (cos x)/(cos y)=(3)/(2) , where x,y in (0,(pi)/(4)) , then the value of tan (x + y) is equal to

If (sin x)/(sin y)=1/2, (cos x)/(cos y)=3/2 = 3/2 , where x, y in (0,pi/4) , then the value of tan(x+y) is equal to:

If 2^(sin x+cos y)=1 and 16^(sin^(2)x+cos^(2)y)=4 , then find the value of sin x and cos y