Home
Class 11
MATHS
The value of lim(n->oo)(sum(r=1)^100(n+r...

The value of `lim_(n->oo)(sum_(r=1)^100(n+r)^(10))/(n^(10)+1 0^(10))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sum_(r=1)^(100)(n+r)^(10))/(n^(10)+10^(10)) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is