Home
Class 11
MATHS
The sum to infinite terms of the series ...

The sum to infinite terms of the series `tan^(- 1)(2/(1-1^2+1^4))+tan^(- 1)(4/(1-2^2+2^4))+tan^(- 1)(6/(1-3^2+3^4))+....` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

Sum to n terms the series tan^-1 (1/(1+1+1^2))+tan^-1 (1/(1+2+2^2))+tan^-1 (1/(1+3+3^2))+…

Find the sum to infinite terms of the series tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+"........."+tan^(-1)((2^(n-1))/(1+2^(2n-1)))+"......" .

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3

2 tan ^(-1) ""(1)/(2) = tan^(-1) ""(4) /(3)

FInd the sum of infinite terms of the series (1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)....

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)