Home
Class 12
PHYSICS
The atomic masses of the hydrogen isotop...

The atomic masses of the hydrogen isotopes are
Hydrogen `m_1H^1=1.007825` amu
Deuterium `m_1H^2=2.014102` amu
Tritium `m_1H^3=3.016049` amu
The mass of deuterium, `_1H^2` that would be needed to generate 1 kWh

Promotional Banner

Similar Questions

Explore conceptually related problems

The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The number of fusion reactions required to generate 1kWh is nearly

The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The number of fusion reactions required to generate 1kWh is nearly

The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The energy released in the reaction, _1H^2+_1H^2rarr_1H^3+_1H^1 is nearly

The atomic masses of the hydrogen isotopes are Hydrogen m_1H^1=1.007825 amu Deuterium m_1H^2=2.014102 amu Tritium m_1H^3=3.016049 amu The energy released in the reaction, _1H^2+_1H^2rarr_1H^3+_1H^1 is nearly

The correct order of wavelength of Hydrogen (._(1)H^(1)) , Deuterium (._(1)H^(2)) and Tritium (._(1)H^(3)) moving with same kinetic energy is

The correct order of wavelength of Hydrogen (._(1)H^(1)) , Deuterium (._(1)H^(2)) and Tritium (._(1)H^(3)) moving with same kinetic energy is

Consider the so called D-T reaction (deuterium-tritium fusion) ._1H^2+._1H^3to._2He^4+n Calculate the energy released in MeV in this reaction form the date m(._1H^2)=2.014102u, m(._1H^3)=3.016049u (b) Consider the radius of both deuterium and tritium to be approximately 2.0fm. what is the kinetic energy needed to overcome the Coulomb repulsion between the two nuclei? To what temperature must the gases the be heated to initiate the reaction?

The atomic masses of deuteron, helium, neutron are 2.014 amu, 3.017 amu and 1.008 amu respectively. On fusion of 0.5 kg of deuterium, ""_(1)H^(2) + ""_(1)H^(2) to ""_(2)He^(3) + ""_(0)n^(1) , the total energy released is

Calculate the binding energy for ._(1)H^(2) atom. The mass of ._(1)H^(2) atom is 2.014102 amu where 1n and 1p have their weights 2.016490 amu. Neglect mass of electron.