Home
Class 11
MATHS
Let a = lim(x->0) x cotx and b = lim(x->...

Let `a = lim_(x->0) x cotx` and `b = lim_(x->0) xlog x,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->0)(cose cx-cotx)

Find : lim_(x to 0)x/cotx

lim_(x rarr0)(2-cotx)

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

lim_(x to 0) (|x|)/x =

lim_(x rarr0)(cotx)^(x)

lim_(x rarr0)(x+1)^(cotx)