Home
Class 11
MATHS
m,n, in 1^+, then lim(x->0) sin x^n/(sin...

`m,n, in 1^+,` then `lim_(x->0) sin x^n/(sin x)^m` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If m,n in I^(+) , then lim_(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

lim_(x to 0) (sin x^(@))/( x) is equal to

If m,n in N,lim_(x rarr0)(sin x^(m))/((sin x)^(m)) is 1, if n=m(b)0, if n>m oo, if n

(2) lim_(n rarr0) (n!sin x)/(n)

lim_(x rarr 0)"x sin" (1)/(x) is equal to :

lim_(x rarr0)(a^(sin x)-1)/(b^(sin x)-1) is equal to

Find lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+) equal

Find lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+) equal

If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to