Home
Class 14
MATHS
" 10."1+2-:{1+2+(1+(1)/(3))}=?...

" 10."1+2-:{1+2+(1+(1)/(3))}=?

Promotional Banner

Similar Questions

Explore conceptually related problems

The following steps are involved in finding the value of 10 (1)/(3) xx 9(2)/(3) by using an appropriate indentity . Arrange them in sequential order . (A) (10)^(2) - ((1)/(3))^(2) = 100 - (1)/(9) (B) 10(1)/(3) xx 9(2)/(3) = (10 + (1)/(3)) (10 - (1)/(3)) (C) (10 + (1)/(3)) (10 - (1)/(3)) = (10)^(2) - ((1)/(3))^(2) [because (a + b) (a -b) = (a^(2) - b^(2))] (D) 100 - (1)/(9) = 99 + 1 - (1)/(9) = 99(8)/(9)

(7) / (5) (1+ (1) / (10 ^ (2)) + (1.3) / (1.2) (. 1) / (10 ^ (4)) + .... oo) =

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

(1)/(1! 10!)+(1)/(2! 9!)+(1)/(3 !! g!) ++ (1)/(1! 10!) = (2)/ (k!) (2^(k-1) -1)

Find the value of (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))(1-1/(5^(2)))…….(1-1/(9^(2)))(1-1/(10^(2)))

If tan y=(2^(x))/(1+2^(2x+1)), then (dy)/(dx) at x=0 is -(3)/(10) (b) -(3)/(10)ln2-(1)/(10)(d)-(1)/(10)ln2