Home
Class 11
MATHS
" Show that "(cosec theta-cot theta)^(2)...

" Show that "(cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that (cosec theta-cot theta)^2=(1-cos theta)/(1+cos theta)

Prove that (tan theta+ sin theta)/(tan theta-sin theta)= (sec theta+1)/(sec theta-1) OR Prove that (cosec theta- cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) OR If sin theta+cos theta = sqrt(2) sin (90-theta) determine cot theta

Prove that : ("cosec "theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) .

Prove that : ("cosec "theta -cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that ( cot theta - cosec theta)^(2) = ( 1- cos theta )/( 1+ cos theta )

(1+cosec theta - cot theta)/(1+cosec theta + cot theta)=

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

Consider the following: 1. sqrt((1-cos theta)/(1+cos theta)) = "cosec" theta -cot theta 2. sqrt((1+cos theta)/(1-cos theta))="cosec" theta +cot theta Which of the above is/are identity/ identities?