Home
Class 11
MATHS
let y=f(x) is a positive function which ...

let `y=f(x)` is a positive function which satisfied equation `sqrt(y^2+2x)+sqrt(y^2-2x)=2x^2` then `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((y)/( x))+ sqrt((x)/(y))= 2 implies (dy)/(dx) =

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

if y=sqrt(x^(2)+a^(2)), then show that y(dy)/(dx)=x

The solution of the equation (dy)/(dx)=sqrt(1-x^(2)-y^(2)+x^(2)y^(2)) is -