Home
Class 12
MATHS
" Prove "cos^(4)A-sin^(4)A+1=2cos^(2)A...

" Prove "cos^(4)A-sin^(4)A+1=2cos^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

Prove the following cos^(4)A-sin^(4)A+1=2cos^(2)A

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

Prove the following identities : (1 - 2 sin^(2) A)^(2)/(cos^(4) A - sin^(4) A) = 2 cos^(2) A - 1

Prove that: cos^(6)A-sin^(6)A=cos2A(1-(1)/(4)sin^(2)2A)

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

Prove the following identities: sin^(4)A+cos^(4)A=1-2sin^(2)A cos^(2)A

If sin A + sin^(2)A + sin^(3)A =1 , then , prove that cos^(6) A - 4 cos^(4) A + 8 cos^(2) A =4 .

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1