Home
Class 12
MATHS
|[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(...

`|[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)

If |[1 1 1];[a b c];[ a^3b^3c^3]|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |[1 1 1];[(x-a)^2(x-b)^2(x-c)^2];[(x-b)(x-c) (x-c)(x-a) (x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

The value of the determinant /_\=|(1,1,1),(a,b,c),(a^3,b^3,c^3)| is (A) (a-b)(b-c)(c-a)(a+b+c) (B) abc(a+b)(b+C)(c+a) (C) (a-b)(b-c)(c-a) (D) none of these

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c