Home
Class 12
MATHS
if log(7)[log3(log2x)]=0 then find sqrtx...

if `log_(7)[log_3(log_2x)]=0` then find `sqrtx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : log_4(log_3(log_2x))=0

if log_(2)(log_(3)(log_(4)x))=0 and log_(3)(log_(4)(log_(2)y))=0 and log_(3)(log_(2)(log_(2)z))=0 then find the sum of x,y and z is

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

If log_2 log_3 log_4 (x+1) =0, then x is :-

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is