Home
Class 9
MATHS
Prove that (2^n + 2^(n-1))/(2^(n+1) - 2^...

Prove that `(2^n + 2^(n-1))/(2^(n+1) - 2^n) = 3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove: (2^n+2^(n-1))/(2^(n+1)-2^n)=3/2

to prove (2^(n)+2^(n-1))/(2^(n+1)-2^(n)))=(3)/(2)(3^(-3)*6^(2)*sqrt(98))/(5^(2)*((1)/(25))^((1)/(3))*(15)^(-(4)/(3))*3^((1)/(3)))=28sqrt(2)

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Prove that : 1+2+3++n=(n(n+1))/2

Prove that :1+2+3+...+n=(n(n+1))/(2)

Prove that 1+2+3+.....n=(n(n+1))/(2)

Prove that (2n!)/( n!) = 1,3,5 ….( 2n-1) 2^(n)

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)