Home
Class 12
MATHS
(|x+2|-|x|)/(sqrt(8-x^3))geq0...

`(|x+2|-|x|)/(sqrt(8-x^3))geq0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be the complete solution set of sqrt(-x^2 +8x-15)/sqrt(1-4{x}) geq0 and B be the complete solution set of [x + [2x]] < 18, where {x) and [x] denotes fractional part and greatest integer of x respectively. Lets denote the set A nn B, then find the sum of those elements of set S which are integers.

lim_(x rarr0)(x sqrt(y^(2)-(y-x)^(2)))/({sqrt(8xy-4x^(2))+sqrt(8xy)}^(3))=

lim_( x to 0)(xsqrt(y^(2)-(y-x)^(2)))/({sqrt((8xy-4x^(2))+sqrt(8xy))}^(3))=

if the set of values of ' x ' satisfying the inequations ((x-1)^2(x+1)^3)/(x^8(x-2))lt=0 and ((x+2)(x^2-2x+1))/(4+3x-x^2)geq0 is x (a) b=2 (b) c=0 (c) d=3 (d) a+b+c+d=1

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

The domain of the function : f(x)=(sqrt(-log_(0.3)(x-1)))/(sqrt(-x^(2)+2x+8)) is :

lim_(x rarr 0) (x sqrt(y^(2) - (y - x)^(2)))/((sqrt(8xy - 4x^(2)) + sqrt(8xy))^(3)) equals :

lim_(x rarr2)(x^(3)-8)/(sqrt(x^(2)+x+2)-sqrt(3x+2))

(3+sqrt(8))^(x^(2)-2x+1)+(3-sqrt(8))^(x^(2)-2x-1)=((2)/(3-sqrt(8))) then the difference between the greatest value and the least possible value of x is: