Home
Class 11
PHYSICS
A spherical ball of radius 3.0xx10^(-4) ...

A spherical ball of radius `3.0xx10^(-4)` m and density `10^(4)(kg)/(m^(3))` falls freely under gravity through a distance `H=nxx500m` before entering a tank of water. If after entering the water the velocity of the ball does not change, then find n. viscosity of water is `10xx10^(-6)(N-s)/(m^(2))`,`g=10(m)/(s)`

Text Solution

Verified by Experts

The correct Answer is:
`(81)/(49) xx 10^(3) m`

`v = (2)/(9eta) r^(2).(r_(0) - r_(w))g = 180 m//sec`.
`h = (32400)/(2 xx 9.8) = (81)/(49) xx 10^(3)m`
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Exercise- 1 PART - II|14 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Exercise- 2 PART - I|11 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise dpp 92 illustration|2 Videos
  • ELECTROMAGNETIC INDUCTION

    RESONANCE|Exercise Exercise|43 Videos

Similar Questions

Explore conceptually related problems

A spherical ball of radius 3xx10^(-4) m and density 10^(4)kg//m^(3) falls freely under gravity through a distance h before entering a tank of water. If after entering the water the velocity of the ball does not change, find h the viscosity of water is 9.8xx10^(-6)N-s//m^(2)

A small ball of radius 'r' falls freely under gravity through a distance 'h' before entering a tank of water. If after entering the water, the velocity of ball does not change, the 'h' is proportional to

A small ball of radius 'r' falls freely under gravity through a distance 'h' before entering a tank of water. If after entering the water, the velocity of ball does not change, the 'h' is proportional to

A metal ball ofradius 10^(-4) m and density 10^4 kg//m^3 falls freely under gravity through a distance 'h' and enters a tank of water. It is found that after entering the water, the velocity of ball does not change. What is the value of h? [eta "for water "10^(-5)" Pas ",g=10m//s^2" and "orh_("water")=10^3kg//m^3 ]

A ball of radius r and density r falls freely under gravity through a distance h before entering water. Velocity of ball does not change even on entering water. If viscosity of water is eta the value of h is given by

A metallic sphere of radius 1.0 xx 10^(-3) m and density 1.0 xx 10^(4) kg//m^(3) enters a tank of water, after a free fall through a distance of h in the earth's gravitational field. If its velocity remains unchanged after entering water, determine the value of h . Given: coefficient of viscosity of water = 1.0 xx 10^(-3) N s//m^(2), g = 10ms^(-12) and density of water = 1.0 xx 10^(3) kg//m^(3) .

A drop of radius 2xx10^(-5) and density 1.2xx10^(3)kg//m^(3) falls through air. The viscosity of air is 1.8xx10^(-5) N s//m^(2). Neglecting buoyancy due to air, the terminal speed of the drop is

A sphere of radius 10cm and density 500kg//m^(3) is under water of density 1000kg//m^(3) The acceleration of the sphere is 9.80m//s^(2) upward viscosity of water is 1.0 centipoise if g=9.81m//s^(2) the velocity of the sphere is

A tank is filled with water of density 10^(3)kg//m^(3) and oil of density 9xx10^(3)kg//m^(3) .The height of water layer is 1 m and that of the oil layer is 4 M . The velocity of efflux front an opening in the bottom of the tank is