Home
Class 12
MATHS
The expression (sinalpha+sinbeta)/(cosa...

The expression `(sinalpha+sinbeta)/(cosalpha+cosbeta)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

if 0ltalphaltbetaltgammaltpi/ 2, then prove that tanalpha lt (sinalpha+sinbeta+singamma)/ (cosalpha+cosbeta+cosgamma)lt tangamma

if 0ltalphaltbetaltgammaltpi/ 2, then prove that tanalpha lt (sinalpha+sinbeta+singamma)/ (cosalpha+cosbeta+cosgamma)lt tangamma

Simplify (sinalpha+sinbeta)/(cosalpha-cosbeta)+(cosalpha+cosbeta)/(sinalpha-sinbeta)

If sinalpha+sinbeta=1/2 , cosalpha+cosbeta=5/4 find the value of tanalpha+tanbeta

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

Suppose alpha,betaa n dtheta are angles satisfying 0