Home
Class 11
MATHS
lim(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(wh...

`lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x]` .(where [-] denotes greatest integer function) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve lim_(xto0)[(sinx)/x] (where [.] denotes greatest integer function)

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Solve lim_(xrarr0^-)[sinx/x] (where [.] denotes greatest integer function.)