Home
Class 12
MATHS
" Function "f(x)=x^(3)+6x^(2)+(9+2k)x+1"...

" Function "f(x)=x^(3)+6x^(2)+(9+2k)x+1" is increasing function if "

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x) = x^(3) - 6x^(2) + 12x - 18 is an increasing function on R.

Show that the function f(x)=(x^(3)-6x^(2)+12x-18) is an increasing function on R.

Show that the function f(x)= x^(3) - 3x^(2)+3x - 1 is an increasing function on R.

Show that the function f(x)= x^(3) - 3x^(2)+3x - 1 is an increasing function on R.

THe interval in which the function f(x) = x^(3) - 6x^(2) + 9x + 10 is increasing in

Prove that the function f(x)=x^(3)-6x^(2)+12x-18 is increasing on R .

The function f(x)=x^(3)+6x^(2)+(9+2k)x+1 is strictly increasing for all x if

The function f(x) = x^(3) - 6x^(2) +9x + 3 is decreasing for