Home
Class 9
MATHS
f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1...

f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

Promotional Banner

Similar Questions

Explore conceptually related problems

F(x)=x^(4)-3x^(3)-7x^(2)-10x-25G(x)=x^(4)-4x^(3)+x^(2)-27x-15 Fidn the number of values o x for which f(x)=g(x)=0

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

f(x)=4x^3-12 x^2+14 x-3,\ g(x)=2x-1 divide f(x) with g(x) and find the remainder.

If the function f(x)=4x^(5)+3x^(3)+2x^(2)+e^(x/7) and g(x)=f^(-1)(x) then the value of g'(1) is

If the function f(x)=4x^(5)+3x^(3)+2x^(2)+e^(x/7) and g(x)=f^(-1)(x) then the value of g'(1) is

Using factor theorem, examine whether g(x) is a factor of f(x) of the following polynomials or not : f(x)=4x^(3)+x^(2)-20x-7andg(x)=3x+2